Investigation on the erosion/deposition processes in the ITER- like Wall divertor at JET using Glow Discharge Optical Emission Spectrometry technique
نویسندگان
چکیده
As a complementary method to RBS, GDOES (Glow Discharge Optical Emission Spectrometry) was used to investigate the depth profiles of W, Mo, Be, O and C concentrations into marker coatings (CFC/Mo/W/Mo/W) and the substrate of divertor tiles up to a depth of about 100 m. A number of 10 samples cored from particular areas of the divertor tiles were analyzed. The results presented in this paper are valid only for those areas and they can not be extrapolated to the entire tile. Significant deposition of Be was measured on Tile 3 (near to the top), Tile 6 (at about 40 mm from the innermost edge) and especially on Tile 0 (HFGC). Preliminary experiments seem to indicate a penetration of Be through the pores and imperfections of CFC material up to a depth of 100 m in some cases. No erosion and a thin layer of Be (< 1 m) was detected on Tiles 4, 7 and 8. On Tile 1 no erosion was found at about 1/3 from bottom.
منابع مشابه
Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).
A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be...
متن کاملMaterial erosion and migration in tokamaks
The issue of first wall and divertor target lifetime represents one of the greatest challenges facing the successful demonstration of integrated tokamak burning plasma operation, even in the case of the planned next step device, ITER, which will run at a relatively low duty cycle in comparison to future fusion power plants. Material erosion by continuous or transient plasma ion and neutral impa...
متن کاملA new visible spectroscopy diagnostic for the JET ITER-like wall main chamber.
In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characteri...
متن کاملR&D on full tungsten divertor and beryllium wall for JET ITER-like wall project
The ITER reference materials have been tested separately in tokamaks, plasma simulators, ion beams and high heat flux test beds. In order to perform a fully integrated material test JET has launched the ITER-like Wall Project with the aim of installing a full metal wall during the next major shutdown. As a result of R&D projects in 2005–2006, bulk tungsten tiles are foreseen at the outer horizo...
متن کامل"Plasma Surface Interaction Issues of an All-Metal ITER"
We assess key plasma surface interaction issues of an all-metal plasma facing component (PFC) system for ITER, in particular a tungsten divertor surface, and a beryllium or tungsten first wall. Such a system eliminates problems with carbon divertor erosion and T/C codeposition, and for an all-tungsten system would better extrapolate to post-ITER devices. The issues studied are sputtering, trans...
متن کامل